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The interplay between quantum Hall ordering and spontaneously broken “internal” symmetries in two-
dimensional electron systems with spin or pseudospin degrees of freedom gives rise to a variety of interesting
phenomena, including novel phases, phase transitions, and topological excitations. Here we develop a theory of
broken-symmetry quantum Hall states, applicable to a class of multivalley systems, where the symmetry at
issue is a point-group element that combines a spatial rotation with a permutation of valley indices. The
anisotropy of the dispersion relation, generally present in such systems, favors states where all electrons reside
in one of the valleys. In a clean system, the valley “pseudospin” ordering occurs via a finite-temperature
transition accompanied by a nematic pattern of spatial symmetry breaking. In weakly disordered systems,
domains of pseudospin polarization are formed, which prevents macroscopic valley and nematic ordering;
however, the resulting state still asymptotically exhibits the quantum Hall effect. We discuss the transport
properties in the ordered and disordered regimes, and the relation of our results to recent experiments in AlAs.
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A remarkably diverse set of phases exhibiting the quan-
tum Hall effect �QHE� are observed in sufficiently clean two-
dimensional electron systems �2DESs� subjected to a high
magnetic field.1 Of these, a particularly interesting subset
occurs in multicomponent QH systems, where in addition to
the orbital degree of freedom within a Landau level �LL�,
electrons have low-energy “internal” degrees of freedom,
such as spin or a “pseudospin” associated with a valley or
layer index. QH states in such systems, in addition to the
topological order, characteristic of all QH states, feature bro-
ken global spin/pseudospin symmetries—a phenomenon
termed QH ferromagnetism �QHFM�. The entangling of the
charge and spin/pseudospin degrees of freedom leads to
novel phenomena in QHFM states, including charged
skyrmions,2 finite-temperature phase transitions, and
Josephson-type effects.1,3

In the cases studied to date, the global symmetry is an
internal symmetry that acts on spin/pseudospin. In this paper
we study a situation where the global symmetry acts simul-
taneously on the internal index and on the spatial degrees of
freedom. This occurs naturally in a multivalley system where
different valleys are related by a discrete rotation so that
valley �pseudospin� and rotational symmetries are inter-
twined. An example of such a system which is central to this
paper is the AlAs heterostructure,4–6 where two valleys with
ellipsoidal Fermi surfaces are present, as illustrated in Fig.
1�a�.

This linking of pseudospin and space in this system has
two significant consequences at appropriate filling factors
such as �=1. First, in the clean limit the onset of pseudospin
ferromagnetism, which occurs via a finite-temperature Ising
transition, is necessarily accompanied by the breaking of a
rotational symmetry that corresponds to nematic order, with
attendant anisotropies in physical quantities. We shall call the
resulting phase a quantum Hall Ising nematic �QHIN�. Sec-
ond, any spatial disorder, e.g., random potentials or strains,
necessarily induces a random field acting on the pseudospins

which thus destroys the long-ranged nematic order in the
thermodynamic limit. Interestingly, though, the resulting
state still exhibits the QHE at weak disorder so we refer to it
as the quantum Hall random-field paramagnet �QHRFPM�.
Although for concreteness we shall focus on the simple case
of the �=1 state in AlAs heterostructures, our findings are
readily extended to other values of � and a variety of multi-
valley systems.

Symmetries. The only exact symmetries of QH systems
are the discrete translational and point-group symmetries of
the underlying crystalline heterostructures. However, in
many circumstances, there are additional approximate sym-
metries, some of which are continuous. To the extent that
spin-orbit coupling can be ignored, there is an approximate
U�1� spin-rotation symmetry about the direction of the mag-
netic field. Since the magnetic length, �B=� �c

eB , and the
Fermi wavelength, �F, are long compared to the lattice con-
stant, the effective-mass approximation is always quite accu-
rate, so it is possible to treat the translation symmetry as
continuous. If the electrons occupy only a valley or valleys
centered on the � point in the Brillouin zone, the effective-
mass approximation also elevates a Cn point-group symme-
try to a continuous U�1� rotational symmetry. Terms which

FIG. 1. �Color online� �a� Our model band structure. Ellipses
represent lines of constant energy in the k space There are two
nonequivalent anisotropic valleys, 1 and 2. ��b� and �c�� Schematic
representation of two types of order in the QHFM. The ellipses here
represent LL orbitals in real space.
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break this symmetry explicitly down to the discrete subgroup
come from corrections to the effective-mass approximation,
and so are smaller in proportion to �a /�F�2, where a is the
lattice constant of the semiconductor. All three of these ap-
proximate symmetries hold in GaAs heterostructures.

However, once there are multiple valleys centered on dis-
tinct symmetry-related Bloch wave vectors, the effective-
mass tensor for each valley is, generically, anisotropic. Thus,
already in the effective-mass approximation, individual val-
leys do not exhibit full rotational invariance; there are only
the original discrete set of rotations which are associated
with a simultaneous interchange of valleys. These discrete
symmetries are unbroken for weak interactions in zero mag-
netic field. However, we show in this paper that in the pres-
ence of a strong magnetic field they are spontaneously bro-
ken at certain filling factors.

Specifically, in the two valley case considered explicitly
here �Fig. 1�a�� the Hamiltonian has an approximate
Z2�U�1� invariance: the Z2 represents the operation of a
� /2 rotation combined with valley interchange. The U�1�
reflects an approximate conservation of the valley index,
which is violated only by the exponentially small Coulomb
matrix elements, Viv, which involve the intervalley scattering
of a pair of electrons. The QHFM should thus exhibit a
finite-temperature Z2 or Ising symmetry-breaking phase tran-
sition, accompanied by a spontaneous breaking of the rota-
tional symmetry from C4 to C2, i.e., to Ising-nematic order-
ing. It is important to note that although Viv breaks the
approximate U�1� symmetry, the Ising symmetry is exact.

We should note that there is well understood counter ex-
ample to our general argument concerning the lack of con-
tinuous symmetries in multivalley systems which is realized
at a �110� surface in Si. Here the 2DEG occupies two valleys
centered at k= �Q /2, Q being shorter than the smallest
reciprocal-lattice vector. In this case, the only rotational sym-
metry is a symmetry under rotation by �. Yet, to the extent
the intervalley scattering, Viv, can be neglected, this problem
was shown by Rasolt et al.7 to have an SU�2� pseudospin
symmetry. This derives from the fact that, in this case, the
effective-mass tensors in the two valleys are identical. While
in the case of interest to us there is only a discrete Z2 sym-
metry, due to the effective-mass anisotropy in each valley, in
the limit of small anisotropy there is a reference SU�2� sym-
metry which is only weakly broken. For clarity, and without
loss of generality, we will in places consider this analytically
tractable limit, although in reality, the mass anisotropy in
AlAs is not small.

Ising anisotropy. The single-particle Hamiltonian in each
of the valleys, labeled by the index 	=1,2, is given by H	

=�i=x,y
�pi−K	,i+eAi/c�2

2m	,i
, where K1= �K0 ,0� and K2= �0,K0� are

the positions of the two valleys in the Brillouin zone. We
work in Landau gauge, A= �0,−Bx�, in which eigenstates can
be labeled by their momentum py that translates into the
guiding center position X= py�B

2 . The lowest LL eigenfunc-
tions in the two valleys are given by


	,X�x,y� =
eipyy

�Ly�B

�u	

�
�1/4

e−
u	�x−X�2

2�B
2 , �1�

where �2= �m1,x /m1,y�= �m2,y /m2,x� is the mass anisotropy in
terms of which u1=1 /u2=�.

Proceeding to the effects of the Coulomb interactions, we
notice that the terms in the Hamiltonian that involve
intervalley-scattering processes require large momentum
transfer, of order � /a, and therefore they are small in pro-
portion to a /�B. In accord with that, we write the Hamil-
tonian as follows:

H = H0 + Hiv, H0 =
1

2S
�
	,	�

V�q��		�q��	�	��− q� , �2�

where S=LxLy is the system’s area, �		 is the density com-
ponent within valley 	, V�q�= 2�e2

�q is the matrix element of
the Coulomb interaction, and Hiv denotes intervalley scatter-
ing terms,8 which we neglect for now.

To account for the spatial structure of LL wave functions,
we follow the standard procedure of projecting the density
operators onto the lowest LL �see, e.g., Ref. 3�,

�		�q� = F		�q��̄		�q�, F		�q� = e−� qx
2

4u	
+u	

qy
2

4
� , �3�

where the projected density operator is given by

�̄		�q� = �
X̄

eiqxX̄c	,X+

† c	,X−
, X� = X̄ �

qy

2
.

In the limit of vanishing mass anisotropy, �→1, the
Hamiltonian H0 is SU�2� symmetric, so at filling factor �
=1 there is a family of degenerate fully pseudospin polarized
ground states, favored by the exchange interactions,

�,� = 	
X

��c1,X
† + �c2,X

† �
0�, 
�
2 + 
�2
 = 1. �4�

In this notation, the components of the nematic order param-
eter are given by nx=���+��� , ny = i���− i��� , nz= 
�
2
− 
�
2, where n2=1. We can use the states �Eq. �4�� to obtain
a variational estimate of the energy per electron of the sys-
tem for different �uniform� values of the order parameter
which should be reliable at least for � near 1. The result is

E0 = − �0�D1 + D2nz
2�, �0 =

1

2
��

2

e2

��B
, �5�

where

D1 = �C1 + C2�/2, D2 = �C1 − C2�/2, �6�

C1 =
2

�

K��1 − 1/�2�
��

, C2 =� 2�

1 + �2 , �7�

K being the complete elliptic integral of the first kind.
Clearly, when ��1, the SU�2� symmetry is broken down to
Z2�U�1� and the resulting QHIN indeed has an Ising �easy-
axis� symmetry. The magnitude of the anisotropic part of the
energy, D2�0, is pictured in Fig. 2. For the experimentally
relevant case, �2�5 and 	�10, the anisotropy reaches a
relatively large value of 5 K at B=10 T. Let us also note, for
subsequent use, that the Ising symmetry can be explicitly
broken in experiments by the convenient application of a
uniaxial strain,4 which then acts as a valley-Zeeman field.

Thermal properties. In order to understand the behavior of
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the system more generally, in particular, to describe the prop-
erties of domain walls and excitations, we need to account
for spatially varying order-parameter configurations. The
classical energy functional for smooth configurations of the
order parameter can be obtained approximately for 
�−1

�1 by the method of Ref. 3,

E�n�r�� =
�s

2
 d2r��n�2 −

�

2
 d2rnz

2, �8�

where �=D2�0 /2��B
2 and �� 3

32
�0

2��B
2 ��−1�2. The symmetric

part of the stiffness coefficient in Eq. �8� is given by, �s

= e2

16�2���B
+O��−1�. In writing Eq. �8�, we have neglected

anisotropic stiffness terms of the form,
�A

2 �d2rnz���xn�2

− ��yn�2� and
�A�
2 �d2r�3��nz�2− ��n�2�. While these terms are

also quadratic in the gradient expansion, in the limit 
�−1

�1, the first term is at most cubic9 in �−1, such that �A
�o���−1�2�, while the second term is quadratic, �A�=o���
−1��, and so they are much smaller than the gradient term we
have kept.

The nematic ordering temperature can readily be esti-
mated from Eq. �8�, which is precisely the continuum limit
of the 2D Heisenberg ferromagnet with weak Ising aniso-
tropy. Consequently, Tc vanishes for �=0, but only logarith-
mically, due to the exponential growth of correlations in the
Heisenberg model,

kBTc � 4��s log−1��s/��B
2� . �9�

Since in reality the anisotropy is not too small, a more robust
estimate is just Tc��s.

10 This puts it in the range of several
kelvin, well above typical temperatures at which quantum
Hall experiments are carried out, which range from a few
tens to a few hundred millikelvins.4

Domain walls and quasiparticles. The topological defects
of an Ising ferromagnet are domain walls, in this case do-
main walls across which the valley-polarization changes
sign. We obtain a domain-wall solution by minimizing the
classical energy in Eq. �8� to obtain the length scale L0

=��s

� which characterizes the domain-wall width and the sur-
face tension, J���s�, its creation energy per unit length.
The domain-wall solution obtained in this way spontane-
ously breaks the approximate U�1� symmetry as the energy is

independent of the choice of the axis of rotation of n in the
plane perpendicular to nz. Naturally, since the domain wall is
a one-dimensional object, thermal or quantum fluctuations
restore the symmetry, but at T=0, and in the absence of
explicit symmetry-breaking perturbations, what remains is a
gapless “almost Goldstone mode” and power-law correla-
tions along the domain wall. A small gap in the spectrum and
an exponential falloff of correlations beyond a distance �iv
are induced when the effects of the weak intervalley scatter-
ing terms, Viv, are included.

In AlAs, the anisotropy is �2�5, so L0 is only 30%
greater than �B, which indicates that our treatment should be
supplemented by microscopic calculations that can better
handle a strong Ising anisotropy.9 A variational ansatz for a
domain wall can be constructed of the same form as in Eq.
�4� by treating � and � as �complex� functions of X, with
asymptotic forms �� ,��→ �1,0� as X→−� and �� ,��
→ �0,1� as X→�. In the limit of large �, the optimal such
state consists of a discontinuous jump between these two
limiting values across the domain wall so that the domain-
wall width is simply equal to �B. When intervalley scattering
is absent, such a wall, being a boundary between two differ-
ent QH liquids �one with �1=0, �2=1 and the other with
�1=1, �2=0�, supports two counter-propagating chiral gap-
less modes—one with pseudospin “up” and the other with
pseudospin “down.” Coulomb interactions between the two
modes turn this into a type of Luttinger liquid. This connects
smoothly to the description obtained above in the limit of
weak anisotropy, and indeed the Luttinger liquid action can
be derived explicitly from a �-model description11,12 by aug-
menting the classical energy in Eq. �8� with an appropriate
quantum dynamics.

The other excitations of interest are charged quasiparticles
and it is well known that in the SU�2� limit at �=1 they are
pseudospin skyrmions of divergent size.2 However, the
smallness of L0 at �2�5 alluded to above implies that for the
experimentally relevant case the quasiparticles will be
highly, if not completely, valley polarized.

Properties of the clean system. For T�Tc, where the
pseudospin component nz has a nonzero expectation value,
C4 rotation symmetry is spontaneously broken to C2. Thus,
nonzero values of any nontrivial traceless symmetric tensor
can also be used as an order parameter.

Ideally, thermodynamic quantities, for instance of the dif-
ference in the valley occupancies, provide the conceptually
simplest measures of the broken symmetry. However, such
quantities are not easily measured in practice. Following our
remark above, we should just as well be able to use the
experimentally accessible transport anisotropy ratio

N =
�xx − �yy

�xx + �yy
� 0 �10�

as a measure of nematic order. However, at T=0, where
�aa=0, N is ill defined. This problem can be resolved by
either measuring �aa at finite temperature, T�0, and then
possibly taking the limit T→0. �Alternatively, one could
imagine working at finite frequency, and then taking the limit
as the frequency tends to 0.� However, in practice, the con-
ductivity is strongly affected by the presence of even weak
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FIG. 2. �Color online� Easy-axis anisotropy of the QHFM as a
function of underlying mass anisotropy.
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disorder, so any practical discussion of the resistive aniso-
tropy must be preceded by an analysis of the effects of dis-
order.

Length scales from weak disorder. By analogy with the
random-field Ising model,13 we know14 that even an arbi-
trarily weak random valley-Zeeman field destroys the order-
ing of the QHIN, leading to formation of “Imry-Ma” do-
mains of opposite valley polarization. In AlAs such disorder
can stem from random strains, which lead to position-
dependent relative shifts of the energies of the two valleys.
While the average strain �i.e., the average pseudomagnetic
field� can be externally controlled,4 fluctuations of the strain
are inevitable. Random fluctuations of the electric potential,
V, also give rise to a random valley field.

The coupling of random strain and potential disorder to
the QHIN order parameter is

Est =
1

2
 d2rh�r�nz�r� , �11�

where the random field h�r�= �hst�r�+hpot�r�� with hst�r�
�

�u�r�
�x − �u�r�

�y , u�r� being the displacement of point r of the
crystal, and

hpot�r� =
�mx − my��B

2

2��2 �� �V

�x
�2

− � �V

�y
�2� . �12�

On the basis of this analysis, we expect that the random
valley-Zeeman field is smooth, with a typical correlation
length �dis��B. For weak disorder, the Imry-Ma domain size
is set by the mean-squared strength of the random field �as-
sumed to have zero mean and to be short-range correlated�
W��d2r�h�r�h�0�� and the domain-wall energy per unit
length, J �defined above� as �IM �exp�A�J�2 /W� where A is
a number of order 1. Because of the exponential dependence
on disorder, it is possible for �IM to vary, depending on
sample details, from microscopic to macroscopic length
scales.

Disorder also leads to scattering between the valleys al-
though this is again suppressed due to the mismatch between
the reciprocal-lattice vector and the length scale of the domi-
nant potential fluctuations. There is thus a second emergent
length scale, �iv, which is the length scale beyond which
conservation of valley pseudospin density breaks down.15

However, this length scale approaches a finite value in the
limit of vanishing disorder due to intervalley Coulomb scat-
tering, discussed above. Different regimes of physics are
possible depending on the ratio of �IM /�iv. Finally, especially
when the filling factor deviates slightly from �=1, there is a
length scale, �QP, which characterizes the quasiparticle local-
ization length. Because the magnetic field quenches the qua-
siparticle kinetic energy, even for extremely weak disorder,
we expect �QP��B is relatively short.

Intrinsic resistive anisotropy. In a quantum Hall state at
low temperatures, dissipative transport is usually due to hop-
ping of quasiparticles between localized states, accompanied
by energy transfer to other degrees of freedom.16 Typically,
transport is of variable-range-hopping �VRH� type, such that
the optimal hop is determined by the competition between
energy offset of the two states and their overlap. We will now

apply these ideas to our system when its transport primarily
involves hopping of electrons between localized states within
one of the valleys. This requires �a� either that a uniaxial
strain be applied to substantially eliminate domain walls and
achieve valley polarization in the proximity of �=1 or that
the sample be smaller than �IM and �b� that �iv be large com-
pared to �QP. For each valley the localization length is an-
isotropic, owing to the mass anisotropy, which results in the
anisotropy of the corresponding contribution to the VRH
conductivity.

The contribution to the resistive anisotropy from quasipar-
ticles in valley 1, N1, can be computed as follows: first, we
transform the anisotropic VRH problem into the isotropic
one by rescaling coordinates, x= x̃ /�� and y=��ỹ. In the
new coordinates the effective-mass tensor is isotropic,
which, given the uncorrelated nature of the potential, implies
that the VRH problem is isotropic,17 and therefore �̃xx= �̃yy.
Since the ratio of the conductivities in the original coordi-

nates is given by
�xx

�yy
= 1

�2

�̃xx

�̃yy
,

N1 =
1 − �2

1 + �2 , �13�

which is negative for ��1, as expected, i.e., it is more dif-
ficult for particles to move in the direction of larger mass.
Clearly, the resistive anisotropy produced by quasiparticles
in valley 2 is N2=−N1.

At �=1 localized states in both valleys are present, and
due to combined particle-hole/valley-reversal symmetry of
the state �in the absence of Landau-level mixing�, the density
of localized states should be same: the resistivity is thus ex-
pected to be isotropic. However, for ��1, particle-hole sym-
metry is broken. Consider the case in which nz=+1, which
corresponds to filling valley 1 states. Then, at slightly differ-
ent filling factor, �=1−�� with 1����0, the density of
localized states for valley 	=1 exceeds that for valley 	=2.
Due to exponential sensitivity of the VRH conductivity to
the density of states, this implies that the contribution of
valley 1 to the total conductivity dominates, leading to an
anisotropy of the total conductivity N�N1. Conversely, for
�=1+��, N�N2=−N1. It is worth noting that the scaling
argument presented above for VRH regime is likely more
general, and also applicable to the regime of thermally acti-
vated transport, which is relevant at intermediate tempera-
tures.

Domain walls and the QHRFPM. We now move away
from the above limit to where domain walls are a significant
contributor to the transport—to systems much bigger than
�IM and at weak uniaxial strain. Now, dissipative transport is
complicated by the existence of multiple emergent length
scales. Transport within a nematic domain proceeds by
variable-range hopping and/or thermal activation of quasi-
particles. For length scales larger than �IM, it is likely to be
dominated by transport along domain walls, which will have
insulating character or metallic character depending on
whether viewed at distances large or small compared to �iv.

A key question is whether the QHE survives the forma-
tion of domains. This is trickiest when no net valley-Zeeman
field is applied where in the thermodynamic limit the domain
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walls form a percolating network. In the limit �iv→�, the
associated edge channels are conducting, and the domain-
wall network can be expected to be well described by two
copies of the Chalker-Coddington network model18 at criti-
cality. This implies a critical metallic longitudinal dc conduc-
tivity of order e2 /h and the absence of QHE. However, at
length scales longer than �iv �or temperatures less than Tiv
�1 /�iv� the domain-wall states are localized, which implies
a phase that exhibits the QHE without Ising/nematic order—
the QHRFPM. Needless to say, in the absence of substantial
amount of short-ranged disorder �which can produce a rela-
tively small value of �iv� the topological �quantum Hall� or-
der in the QHRFPM is likely to be fragile. �In some ways
similar results were obtained by Lee and co-workers,19 who
considered an SU�2�-symmetric disordered QHFM, where
magnetic order is destroyed by forming a spin glass without
destroying the QHE.�

In the presence of a uniform valley-Zeeman field h̄, which
in the experiments on AlAs can be controlled by applying
uniform strain,4 the existence of the QHE is much more ro-
bust. Even weak fields can restore a substantial degree of
valley density polarization as domains aligned with this field
grow while those aligned opposite to it shrink. Consequently,
the domain walls no longer percolate but rather are separated

by a finite distance that grows with increasing h̄. While we
have yet to construct a detailed theory of the transport in this
regime, it is clear that the characteristic energy scale charac-
terizing the dissipative transport will rise rapidly from Tiv for

h̄=0, to the clean-limit gap �0��s for substantial values of

h̄. It is also important to note that this equilibrium response
will come embedded in a matrix of dynamical phenomena
characteristic of the random-field Ising model that can be
translated straightforwardly to the case of the Ising nematic,
as has been discussed in another context in Ref. 20. In par-
ticular, the macroscopic nematicity induced by the applica-

tion of h̄ will be metastable for long times, even upon setting
�h�=0—thus giving rise to hysteresis.

Experiments. Turning briefly to experiments we note that
an anomalously strong strain-induced enhancement of the
apparent activation energy at �=1 has been observed4,21 in
AlAs, where it was tentatively attributed to the occurrence of
valley skyrmions. As we noted earlier, in view of our esti-
mate of a large Ising anisotropy skyrmions of the requisite
size �about 15 flipped pseudospins21� are implausible. We
would like to suggest that it is more plausible that these
remarkable observations are associated with the growth of
QHIN domains. In support of this idea, we have estimated
the domain size from the long-ranged part of the potential

disorder alone and find that it should be order the distance to
the dopant layer, �dis�50 nm which is thus much smaller
than the system size. However, we currently lack a plausible
estimate of �iv which is sensitive to the short-ranged part of
the disorder and which is needed to round out this explana-
tion. Direct measurements of resistive anisotropies, and of
hysteretic effects characteristic of the random-field Ising
model20 could directly confirm this proposal.

Related work. We note that there is a sizeable body of
existing work on Ising QHFMs produced at level crossings
of different orbital LLs, which is typically achieved by ap-
plying tilted magnetic fields. These systems exhibit enhanced
dissipation at coincidence22–24 which is the analog of a dis-
sipation peak at zero valley-Zeeman field in our language.
Qualitatively, our results concerning the domain-wall trans-
port are consistent with this earlier work. Where we differ is
in our contention that the domain walls do not, even at zero
valley-Zeeman field, produce dissipation at T=0—in the pre-
vious work25,26 this was not explicitly addressed in part as
the focus was on accounting for the unexpected dissipation.
The reader will also note that the QHIN studied here differs
from the “nematic quantum Hall metal” �NQHM� phase
which has been observed27,28 in ultraclean GaAs-GaAlAs
heterostructures for fields at which the n�1 Landau level is
nearly half filled. Unlike our system, the NQHM is a metallic
state which does not exhibit the QHE but has a strongly
anisotropic resistivity tensor.

In closing. The distinctive feature of our system is the
breaking of a global symmetry that combines spatial and
internal degrees of freedom. This physics and its attendant
consequences will generalize immediately to other ferromag-
netic fillings in the present system and then to other experi-
mentally established examples of multivalley systems such
as monolayer and bilayer graphene,29,30 where two valleys
are present, and Si �111�,31 where, depending on the parallel
field, either four or six degenerate valleys can be present.
Potentially, our ideas could apply farther afield in the case of
three-dimensional Bi, where three electron pockets related
by 2� /3 and 4� /3 rotations are present. Recently, high-field
anomalies in transport and thermodynamic properties of Bi
were found,32,33 which may indicate spontaneous breaking of
the Z3 valley symmetry driven by magnetic field, reminiscent
of QHFM.
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